

RESOURCE CONSUMPTION AND PERFORMANCE
CHARACTERISTICS OF ISYS

© ISYS Search Software Inc

ISYS Search Software Worldwide

United States

Australia

United Kingdom

ISYS Search Software Inc
8775 East Orchard Road
Suite 811
Englewood, CO 80111
USA

Phone: +1 303 689 9998
Email: info-us@isys-search.com
Fax: +1 303 689 9997

ISYS Search Software Pty Ltd
Suite 102,10-12 Clarke St
Crows Nest NSW 2065
Australia

Phone: +61 2 9439 5800
Email: info-au@isys-search.com
Fax: +61 2 9439 8569

ISYS Search Software (UK) Ltd
The Steam Mill
Steam Mill Street
Chester CH3 5AN
United Kingdom

Phone: +44 (0) 1244 313 216
Email: info-uk@isys-search.com
Fax: +44 (0) 1244 313 003

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 2 www.isys-search.com

CONTENTS

Introduction.. 3
Product Range Architecture... 3
Engine Architecture ... 4
General Versus Specific .. 5
Language Handling ... 6
Client-Server Versus Single-Tier ... 6
Network Impact Expectations .. 8
Network Traffic Tuning Essentials ... 8
Indexing Remotely ... 8
Index Scheme Overview.. 11
Effect of CD or Read-Only Optimization .. 12
Indexing Process Overview ... 12
Indexing Efficiency... 13
Index Volume and Scaling ... 13
Index Granularity ... 14
Enumeration Efficiency .. 15
ISYS and Virus Scanners .. 16
Document Granularity.. 16
Efficiency of Very Large Documents.. 17
ISYS Searching Versus SQL Searching ... 17
SQL Indexing Concepts... 18
SQL Primary Key Fields .. 19
SQL Efficiency ... 20
SQL Field-Level Searching.. 20
ISYS and XML ... 22
Relevance Ranking.. 22
ISYS:web Server Bandwidth Considerations ... 22
Real-Time Indexing.. 23
Taxonomies and Categorization .. 24
Distributed Index and Data Scenarios.. 24
Opportunistic Locking .. 28

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 3 www.isys-search.com

INTRODUCTION

Organizations planning an ISYS deployment often wish to know more about the architecture,
performance and scalability factors of ISYS in order to better prepare themselves. Frequently,
new customers are concerned about bandwidth issues, CPU loading or the like. This document
seeks to explain more about the technical implementation details of ISYS so that administrators
will better understand how ISYS can deal with large data volumes and still maintain performance.

PRODUCT RANGE ARCHITECTURE

The ISYS product range consists of a series of interlocking products which can be utilized
depending on the type of knowledge you want to manage, and the scenario in which each will be
employed, as shown by the following diagram.

All products are based on the core ISYS engine, and are thus fully inter-operable. Additionally,
OEM customers may choose to license the core ISYS engine directly for use in their own in-
house or commercial applications.

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 4 www.isys-search.com

All ISYS products are optimized to run on Intel-based (or compatible) computers running
Windows family operating systems, but are able to manage knowledge stored on a wide variety of
platforms, including Unix and mainframe.

ENGINE ARCHITECTURE

The ISYS engine is a highly-optimized, integrated indexing and search tool. It provides a
homogenous interface to a heterogeneous world, and is fully polymorphic in its ability to perform
identical search operations on completely disparate data sources. For example, Oracle
databases, three-dimensional spreadsheets, PowerPoint presentations, external websites,
mainframe print files and Microsoft Office documents can all be treated in the same way. Users
(and applications) do not have to be aware of the underlying nature of the data unless they want
to be.

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 5 www.isys-search.com

GENERAL VERSUS SPECIFIC

For knowledge management products in general, and ISYS specifically, there are many, many
variables that can affect any performance and scalability scenario. An example of these that
affect the source data include:

• The breadth of vocabulary in the index

• The number of occurrences of each unique word in the index

• The shape of the curve if one were to graph the above relationship

• The minimum, average, maximum, and median size of individual documents

• The format of the documents involved, for example, ASCII versus Word

• Index granularity

An example of factors that affect the use of the index at query time include:
• The number of words involved in queries

• The number and types of operators (proximity, Boolean, etc) involved in queries

• The use of features such as fuzzy precompensation

• The presence and usage of synonyms or thesaurus

• Wild cards or tense conflation, wide or narrow

• The use of broad-scope queries versus narrow-scope (fielded) queries

• The size of final results

• The size of intermediate results

• The form in which results are displayed

• The proportion of found documents that are subsequently browsed

• The number of queries per hour, and the characteristics of those queries

• Hardware performance

In theory, if precise answers were known to all of the above factors (and more), then a precise
resource consumption answer could be given for any scenario.

In practice, however, exact answers are rarely available. More often than not, this is because the
most unknown factor is the behavior of users. Nowhere is this more true than with a new
implementation where you are deploying a totally new information resource, and cannot predict
the extent to which it will be taken up, and what type of queries and other behaviors will be
involved.

The net effect of this is that the information contained in this document should be considered
indicative only, and the details will depend on your own unique situation. The guidelines and
issues discussed in this document are universally applicable, but your specific mileage may
vary.

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 6 www.isys-search.com

LANGUAGE HANDLING

ISYS normalizes all characters to a common form, based on the active code page of the
machine. Unicode data, when encountered, is transparently converted to the common form so
that searches succeed regardless of whether the target data was expressed in Unicode or single-
byte.

ISYS provides built-in handling of all single-byte languages (English, German, French, Arabic,
Greek, Dutch, Spanish, Vietnamese, Malaysian, Cyrillic, etc), as well as multi-byte languages
(Korean, Japanese, Traditional and Simplified Chinese).

Language options are configured on an index-by-index basis, and automatically take appropriate
defaults when a machine is detected as having language settings other than English. For
European languages, indexes may be configured to either respect diacriticals (the default), or to
search as though the diacriticals were not present.

CLIENT-SERVER VERSUS SINGLE-TIER

ISYS is available in both client-server (ISYS:web or ISYS:web.asp) and single-tier (ISYS:desktop)
configurations. The ISYS:sdk may be used to create applications in either architecture.

The choice between configurations should be made in light of “bigger picture” considerations
within your organization – whether your strategic preference is thin client or applications running
directly on the desktop. Performance should rarely be a deciding architectural factor for the
reasons discussed herein.

Client-server architecture offers many advantages for conventionally structured relational
database systems. The key benefit is its ability to perform an application’s resource-intensive
processing on a server in close proximity to the data. Consequently, a relatively small result set is
sent from client to server, which minimizes network traffic.

For example, consider a traditional database application which needs to access a relational table
containing 100,000 records, select 100 of those records, and summarize them into 20 lines. In a
client-server environment, the client sends the request across the network to the server, the
server does all the work, then just sends back the 20 summary records the client application
really wants to see. In a non-client-server environment, there would be 100,000 records flowing
across the network, almost all of which would be discarded by the client as unwanted records. In
this conventional scenario, client-server computing offers clearly superior utilization of network
resources.

For knowledge management applications, however, client-server architectures are not
automatically superior in this respect. Unlike structured databases, knowledge management
products such as ISYS typically do not perform large-scale searching or summarization.
Certainly, processing is required to apply proximity searching and Boolean operators, but the
amount of I/O is generally dramatically less than that performed by a relational query on a
structured database.

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 7 www.isys-search.com

Searching in a knowledge management system is confined to a relatively small index file, and is
not a search of the text itself.

The ISYS index is designed so that, generally speaking, no data is read from the index which is
not subsequently used. ISYS never has to search its index, rather the index is structured such
that it always knows exactly where to go in the index to find a particular result.

Thus, although client-server architecture may often be desirable for other reasons, the
performance issues associated with traditional relational database client-server architecture do
not apply to fully inverted text indexes such as ISYS.

It is also worth noting that it’s entirely valid to make use of both approaches, for example running
ISYS:web and ISYS:desktop alongside each other.

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 8 www.isys-search.com

NETWORK IMPACT EXPECTATIONS

When considering any aspect of ISYS network performance, there are really two quite distinct
situations: maintaining the index versus querying the index.

Performance during index maintenance tends not to be the most important aspect, since
maintenance occurs relatively rarely (compared to the frequency of queries), and there is often
some flexibility as to the time of day in which it is performed.

The first law of knowledge management is that good performance during queries is paramount,
because queries happen so often and because this is where the benefit of products such as ISYS
accrues.

The guideline here is that ISYS imposes a much lower load on your network during searches than
you probably expect. You may wish to refer to the document “Resource Consumption and
Performance Characteristics” for details.

NETWORK TRAFFIC TUNING ESSENTIALS

The most important rule when implementing ISYS on any form of network is to be aware of and
avoid the performance penalty for crossing a slow network segment.

There are two angles to this. One is from the ISYS engine to the user, which obviously depends
on whether you are running the ISYS engine locally or as a remote server. The other is from the
ISYS engine to the disk-based information it accesses. This section discusses the latter.

Typically, the ISYS engine (whether running locally or as a server) will be accessing information
on a hard disk which may either reside in the same machine as the CPU on which the engine is
running, or on a disk elsewhere on a LAN or WAN. Usually, the effective speed of the disk
volume will not be clearly indicated in the means by which you access it. In other words, a drive
may be accessed via a mapped drive letter (for example, “R:”), or via a UNC (“\\server\data”), and
in either case may be a fast local disk or a much slower remote disk. The means of identification
tells you nothing about the speed of access.

The trick, therefore, is to do as much I/O as possible on the local disk. At first glance, this may
appear to be a highly complex task that is best left in the hands of the software vendor. In fact,
there are a number of simple deployment and implementation factors that put these issues simply
and firmly under your control.

INDEXING REMOTELY

Ideally, your data being indexed, your indexes, and the indexing process will all be running on the
same machine with locally attached devices (not network shares). See Figure 1.

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 9 www.isys-search.com

Figure 1: Ideal Performance.

In reality, such a simple arrangement is rarely the case. The processing dynamics of ISYS
indexing are such that very different disk I/O load considerations are present for the different
types of I/O. Specifically, I/O can be broken into the following categories

• Document I/O

• Index I/O

• Work file I/O

An ISYS indexing run consists of a period where the document files are read and the text is
extracted, periods where extracted and transformed text is flushed to work files, and periods
where the work files are used to update the ISYS index.

Typically, the document I/O is negligible compared to everything else. Even for very large
documents, the I/O involved in reading is rarely a performance consideration because ISYS reads
each document once, from start to finish, and that’s all.

Work file I/O is far more intense because the work files are revisited during the indexing run and
accessed non-sequentially. By default, indexing work files are created in the same directory as
the index itself.

Index I/O is the most intense of all, particularly when an existing large index is having a large
amount of new text added to it. For particularly large data volumes, the work files may be
processed into the index several times during a large indexing run.

The guideline to derive from this is that it is far more important to have your indexes (and work
files) on a fast device locally attached to the CPU running the indexing process, than it is your
documents. Put another way, it is almost always fine to build an index of remote documents
(Figure 2), but it is rarely acceptable to build a remote index of documents, be they local or
remote (Figure 3).

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 10 www.isys-search.com

Figure 2: Very good performance

Figure 3: Very poor performance.

The solution, of course, if you really need to construct an index remotely, is to also run the
indexing process remotely.

If the scenario is not one of remote indexing, but of merely building an index which resides on a
slow volume, then great benefit can be reaped by leaving the index and indexing process where
they are, and relocating the work files to a faster device.

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 11 www.isys-search.com

INDEX SCHEME OVERVIEW

ISYS uses a fully-inverted index architecture, supplemented by a series of proprietary ancillary
structures.

ISYS indexes are generally self-managing, in that for normal operation they do not require regular
compaction or rebuild utilities to be run. They reuse their own space, and store information in a
highly compact form.

There are four main files that comprise an ISYS index:
• IXC One fixed length entry per indexed document, containing document name and

other details.

• IXD Optional fuzzy precompensation index.

• IXB Word and document index, performance-aiding information, concordance
pointers.

• IXA Index into the IXB.

The relative sizes of these files will depend on your exact details, for example, your average
document size and vocabulary spread. Growth characteristics are described in the document
“Resource Consumption and Performance Characteristics”.

The powerhouse is the IXB file, which contains an index of unique document names, unique
words, a series of bookmark entries to assist in navigating large documents efficiently, and the
concordance pointers which represent the inverted index. The IXB file is logically a self-
managing, variable length, direct access block file.

Each concordance pointer is a three-part hierarchical pointer, holding document number,
paragraph number within document, and word number within paragraph. The concordance
pointers are run encoded, and then compressed. The unit of space allocation is the nybble (4
bits). Each pointer is of variable length, and each subfield of the pointer is of variable length.
Concordance pointers may vary in size from 1.5 bytes (12 bits) up to 9.5 bytes (76 bits). For any
given index, there would be a great diversity of pointer sizes, but an average would be in the
range of 3 to 5 bytes.

Concordance pointers are blocked into the IXB, and stored backwards so that new documents
can be placed on the near end of the chain rather than the far end. A key performance indicator
for inverted index search engines is the number of word references which can be retrieved per
physical I/O. For ISYS, this is typically in the range of 300-400. In other words, when you search
for a particular term, ISYS can retrieve details of around 400 occurrences of that term, no matter
where they appear, for each physical I/O.

Note that retrieval time is a function of how many concordance pointers are to be retrieved for a
given search term, not total index size.

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 12 www.isys-search.com

EFFECT OF CD OR READ-ONLY OPTIMIZATION

When an index has been processed by ISYS:publisher into a CD Optimized index, the size of the
IXC file is reduced by a fixed percentage, and the IXA file size is reduced to a placeholder. This is
because the machinery within the index to self-manage and re-use space has been removed.

In the case of a CD Optimized and compressed index, the discrete IXB blocks are subject to
individual compression. Three separate compression schemes are employed depending on the
class of IXB block involved, and the schemes are adaptive.

Additionally, optimized indexes are rearranged to make the logical and physical block clustering
coincide, thus minimizing changes of direction in disk head movement.

INDEXING PROCESS OVERVIEW

When an ISYS index is created, various configuration parameters are read from their respective
files and loaded into the index files. These include:

• Significant and insignificant character lists

• Common words

• Intelligent date, number and dot handling

These items are initialized into the index files so that if the configuration is altered after the index
is created, the settings used will be those that were in effect at index creation time. For these
settings, it is crucial that they do not alter during the life of the index, as they affect the way
existing data should have been interpreted. Configurations may be changed during the life of the
index, but require a simple REINDEX in order to take effect.

For ISYS:sdk usage, there are a variety of methods of updating the index:
• Using rule-based indexing, and performing an IDB_Function(“UPDATE”). This method

automatically reconciles the state of the indexes to the current document set, and is the
method used by ISYS:desktop and ISYS:web.

• Using transactional indexing, and applying a journaled transaction file by calling
Process_Transactions.

• Using the low-level indexing API to supervise index activities at a very detailed level.

The details contained herein primarily relate to the first (rule-based) method. When an index
update is performed, the processing consists of three parts:

• Enumerating the document space and comparing what is found against what is in the
index, in light of the rules which describe what should be in the index. This produces a list
of documents to be added to, updated in, or removed from the index.

• Opening each document, reading the words, and effectively performing a matrix
transposition of the word/location relationship. A document is a list of words presented in
the order they occur, and in this phase, ISYS transforms this into a list of words
presented in word order, along with positional information. This information is collated
into a compressed form in memory, and written to disk-based work files as required.

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 13 www.isys-search.com

• The final phase involves opening the index files for write purposes, and updating the
concordance chains based on the contents of the work files. This may be highly I/O
intensive.

The first and second phases are interruptable, that is, they may be terminated without any
implications. The final phase is atomic, and must be allowed to fully complete in order to obtain a
logically consistent index. The ISYS engine ensures that this process runs to completion, barring
apocalyptic events.

De-indexing is a separate matter, and is outside the scope of this document.

INDEXING EFFICIENCY

Essentially, indexing performance is a function of the amount of information to be indexed, the
existing index size, the vocabulary characteristics, and the format of the data.

In the simplest case of ISYS indexing ASCII files, there is no additional layer of software between
ISYS and the text. In the case of a Word document, for example, not only must ISYS navigate
through the complexities of a Word binary file, but also call Windows OLE to access the
underlying storage. Similarly, with SQL-based data, there is a DBMS between ISYS and the text.
The overhead imposed is variable, and may be a factor of two, depending on your details.

Indexing performance is best measured in words per minute. This is because some document
formats are more efficient than others. For example, a megabyte ASCII file contains rather a lot of
text, whereas a megabyte Word document could potentially contain very little.

Performance depends on many factors, including vocabulary and indexing options selected. As
an indication, on 2Ghz machine, ISYS has been measured reading and indexing four million
words per minute. For ASCII files, this is in the order of 25Mb/min. For Word documents, this
might be more like 100-150Mb/min.

For ISYS, indexing efficiency comes down to economies of scale. ISYS is designed to work better
with large data volumes. For example, it is better to index 10,000 documents at once than it is
100 batches of 100 documents. It’s even better to index 1,000,000 documents at once. This is
because, after the matrix transposition is performed, effectively all documents are being
processed at the same time.

The effect of this is so extreme, that you may consider that every additional document you want
to index is being done at no cost. Obviously this is not really the case, but the relative cost of
indexing an extra document in a large indexing run versus starting a new indexing run is so
pronounced that this is the correct mindset to adopt.

INDEX VOLUME AND SCALING

Each ISYS index may contain up to 32 million documents, each of up to 65,535 paragraphs, each
of up to 65,535 words. Orthogonally, this implies a maximum document size of two billion words.
If a single paragraph exceeds 65,535 words, then ISYS will insert its own virtual paragraph

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 14 www.isys-search.com

marker. If a single document exceeds 65,535 paragraphs, then information will still be fully
indexed, but proximity searching may be compromised.

Up to 64 indexes may be chained at once for simultaneous searching, which allows for a
maximum of two billion documents being covered by a single search, providing for a theoretical
maximum of four quadrillion words (four thousand billion words) in a single search. In practical
terms you are unlikely to have the maximum number of documents, all exactly of the maximum
allowable size.

Chains of chains may also be chained, as long as the total number of indexes does not exceed
64. ISYS automatically resolves loops, recursive whirls and duplicates where complex chains of
chains are involved. Chaining imposes a small fixed overhead proportional to the number of
indexes in the chain, not the number of documents involved. The overhead of resolving the chain
is sufficiently small as to be insignificant for most practical purposes.

Indexes maintain very good retrieval performance as size increases, due to the factors described
previously in this document. Retrieval time remains a function of the number of references found,
not the total amount of information in the index.

Index maintenance performance will degrade slowly as index size increases, until it reaches a
plateau. Updating in larger batches helps avoid the effects of performance decline as indexes
grow, because the critical measure is the size of the index at the beginning of the update batch,
not the end. Appropriate use of index granularity, leveraged off the knowledge of the specifics of
your scenario can help to keep index maintenance performance fast.

INDEX GRANULARITY

While it might seem simplest to have one monolithic index containing all your information, in
practice it is simplest to implement a level of index granularity that reflects the natural granularity
of your data. This aids data management issues, and also assists with performance.

For example, consider the scenario of new documents being created on a daily basis which need
to be collected and searched en-masse. This might be capturing information from a news feed or
indexing reports manually created by field officers.

The best arrangement, rather than to place all your text in a single subdirectory holding hundreds
of thousands of files, would be to have a directory structure that reflects the time-based nature of
the data. For example, one directory per year, with one directory per month underneath, and
perhaps one directory per day underneath that. You would arrange for new data to be created in
the appropriate directory as time passes, and this would let you more easily perform backups and
archiving.

In this sample scenario, your ISYS index structure would reflect the same architecture to some
degree. For example, you might have one ISYS index per year (even though your data granularity
is by month or day). ISYS will only update one index at a time, but can easily search multiple
indexes simultaneously by chaining (statically or dynamically). Alternatively you might have one
ISYS index per month. You may even have one ISYS index per month for the current year, but
one index per year for past years.

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 15 www.isys-search.com

The advantages of appropriate index granularity are:
• Because each index is smaller, they are more convenient to move around, backup and

generally work with from a file management perspective.

• If you want to maintain only a “window” of data (for example, the last five years), then
“dropping off” old data simply consists of archiving to tape and no longer referencing that
index in the chain. If you used a monolithic index, then you would have to perform a large
amount of work to actively de-index the old material.

• Because each index is smaller, incremental updates will be processed faster.

• If you do want to search some ancient data archived to tape, then the data and the
appropriate portion of index travel together.

• If an index becomes corrupt for any reason, you only have to rebuild the corrupted
portion, which will take less time.

Even if your situation does not involve chronological data then granularity should still be
considered. Most data has a natural granularity, be it geographic, functional, chronological or
other. Working with your natural granularity makes life easier. Working against it makes life
harder.

ENUMERATION EFFICIENCY

In most scenarios, indexes will be updated by the simple approach of using ISYS Utilities or by
issuing an IDB_Function(“UPDATE”) call, as opposed to a more specific transactional or low-level
approach. In these situations, as described in the section Indexing Process Overview (page 12),
ISYS begins by enumerating the document name space (be it disk files, email, SQL, etc) in order
to determine what changes need to be assimilated into the index.

In most situations, the time spent enumerating the document name space will be brief compared
to the time spent updating the indexes. However, you may have a scenario in which the
enumeration time becomes a substantial proportion of total processing time, for example if you
have a very large number of documents, very few of which are new or altered each update run.

The default settings of ISYS will give perfectly acceptable performance, but if you wish to
leverage your situational knowledge to enhance performance, there are four avenues open to
you:

• Where possible, use explicit indexing rules rather than AUTO. AUTO requires ISYS to
read the first kilobyte of each file to ascertain its format and this I/O, although small, adds
up over a large number of files.

• Where AUTO is still being used, make judicious use of BYPASS rules to let ISYS know
which files it doesn’t need to consider. For example, if you have a mixture of Wordperfect
and Word documents spread through a directory tree with no naming conventions, plus a
bunch of “.XYZ” files which do not contain text, then use an AUTO rule for the documents
but precede it with a BYPASS rule. This is true even for things like TIF files, because
following a blanket AUTO rule ISYS will inspect the TIF file just to make sure it’s not a
document with an unusual extension. If you can confidently state that everything with a
TIF extension is definitely not a document, then tell ISYS.

• Where large portions of your documents are known to be static, make use of the STATIC
directive in your ISYS.CFG to completely short-circuit enumeration of those sub-trees
during UPDATEs.

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 16 www.isys-search.com

• Where appropriate, use index granularity to ameliorate the situation.

As is usually the case with ISYS, most anticipated performance problems never arise, so it is best
to take the simplest approach and only use these techniques if and when required.

ISYS AND VIRUS SCANNERS

Running a virus scanner will most likely have a dramatic negative impact on ISYS indexing
performance. Most virus scanners intercept file open requests and automatically step in and scan
the file to ensure it does not contain a virus. An ISYS indexing run is likely to open many files in
order to index them, and the added overhead of your virus scanner could have a substantial
impact on performance.

This is especially true where AUTO is being used and where your indexing rules cause ISYS to
inspect a large number of files which end up not being included in the index (non-document files),
since ISYS has to open each file to determine its contents. The guidelines in the above section on
Enumeration Efficiency will help you prevent ISYS from accessing files it doesn’t need to, and the
benefit reaped from this will be even greater where virus scanning software is being used.

The best approach, however, is to configure your virus scanning software to not check for viruses
upon file access while an ISYS indexing run is proceeding.

DOCUMENT GRANULARITY

It is a recurring theme in this document that the details of the performance you will see depend on
the specifics of your situation. One very basic measure is that of document granularity. Taken to
extremes, this refers to the difference between having an index that consists of a single
mammoth document, versus having hundreds of millions of documents containing only one or two
words each. The vast bulk of normality lies somewhere in between.

The nature of your data will dictate a natural granularity, and it usually pays to go along with the
natural granularity rather than impose an artificial one.

Granularity has a number of effects on ISYS, the main one being the searchability of documents
and navigability of results. For example, ISYS likes to find related terms in the same document. If
your granularity is too large or too small, then you subvert ISYS’ ability to use related terms to find
high quality documents. Similarly, when ISYS produces a result list, its first step is to display a
result of all the documents found. If this list only ever consists of the same, single mammoth
document, then you are not getting best value from ISYS. ISYS will work regardless of the
granularity of your documents, but keeping to a granularity that accurately reflects the nature of
your documents and the way in which you want to use them will give best results.

The other means by which granularity effects ISYS is through performance and scalability. Again,
the best approach is to stick with the natural granularity of your data, and to not fight it. However,
be aware that extreme divergence at either end of the curve may result in atypical performance or
resource consumption. For example, in a “normal” index the IXC file (which contains one fixed
length record per document) is a fraction of the size of the IXB file. If your data consisted entirely

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 17 www.isys-search.com

of documents containing only a single word, then you might find that your IXC file would become
disproportionately large relative to your IXB.

Everything will work fine, even at the extremities of the envelope – you should just be aware that
the performance you observe may be different to other, more common, scenarios.

EFFICIENCY OF VERY LARGE DOCUMENTS

Except in some unusual circumstances, ISYS never loads an entire document into memory. ISYS
has the ability to navigate randomly through exceedingly large documents, going directly from
one hit to the next without accessing the parts of the document in between. It achieves this by
recording “bookmark” information or checkpoints into the index, which facilitates reading a
document commencing from any point within it, even for complex formats such as Microsoft Word
or Excel, and for compound file structures such as CHM or XML.

This means that you do not have to artificially break documents into small pieces for fear of
overloading machines with small amounts of memory. Extremely large documents can be
opened with impunity on modestly configured machines and across slow networks. ISYS is
regularly used with individual documents hundreds of megabytes in size.

ISYS SEARCHING VERSUS SQL SEARCHING

A key strength of ISYS is its ability to index SQL relational databases, either on their own or in
conjunction with disparate external data sources. A single query can span multiple SQL
databases on different DBMSs, local Microsoft Office files, Lotus Notes, email, spreadsheets,
external websites, and so on.

Searching SQL databases with ISYS is fundamentally different to the way you would do it using
normal SQL methods.

Furthermore, ISYS can completely satisfy a query request without placing any load on your SQL
server whatsoever. The query is completely handled by ISYS and uses no DBMS resources.

SQL is good at searching for a specific value, or range of values within a specific column. It is
very bad at searching for a particular value which may occur in any column, and it is similarly very
bad at searching for a fragment which may occur in a specific column.

Consider a table which contains three textual columns and the desire to find a given word
anywhere in any of those columns. This could be done using the following SQL statement

SELECT *
FROM MyTable
WHERE (Column1 LIKE ‘%CAT%’) OR (Column2 LIKE ‘%CAT%’) OR
(Column3 LIKE ‘%CAT%’)

This is an exceedingly poor approach. Not only does it leave the SQL optimizer with no choice
but to perform a laborious full table scan which guarantees unacceptable performance as data
volumes grow, but it also may miss information or produce false matches because SQL has no

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 18 www.isys-search.com

understanding of the concept of a “word”. For example, it would match on “caterpillar”, even
though that is not the intention. Altering the LIKE comparison to include a space on either side
(LIKE ‘% CAT %’) would solve this problem, but then fail to match where the target word appears
at the start of the column, the end of the column, or followed by punctuation such as a comma or
full stop.

In short, for searching text there is no substitute for a tool which properly understands the nature
of text and can do appropriate parsing, as well as add value though language specific features
such as tense conflation and synonyms.

Further, you obtain the benefit of search performance that is proportional to the size of the result,
whereas misusing SQL as in the above example produces performance which is proportional to
the amount of data being searched and thus cannot scale.

Some SQL database products do include full text style search capabilities, but these are usually
an afterthought and lack the feature richness of professional search tools. Furthermore, they are
usually restricted to searching only within the SQL database, and cannot step outside that
environment into external Word documents, etc.

SQL INDEXING CONCEPTS

A single ISYS index may reference a single or multiple SQL data sources, and a mixture of
external data if desired. The ISYS index does not import or duplicate the SQL data, but is merely
an index to the original data in its original location, which may be any ADO, BDE or ODBC data
source, residing on any hardware or software platform.

Conceptually, each SQL data source is described to ISYS by means of an arbitrary SQL SELECT
statement. The full power of the SELECT statement is available to you, so you can:

• Span multiple tables by means of JOINs

• Select a subset of rows or columns

• Reorder rows or columns

• Perform arbitrary pre-processing of information

ISYS uses the SELECT statement to enumerate the name space, and considers each row
returned as a separate ISYS “document”. This means the granularity of the SQL database is at
the row level, which maximizes search and result usefulness.

As well as using the SELECT statement to fully enumerate the name space, ISYS also uses
SELECT to retrieve individual rows for indexing or browsing purposes. It does this by adorning
the SELECT with a WHERE clause specifying the record required. Note that this only happens
during indexing or when a particular record is opened at browse time. An entire ISYS query can
be resolved without accessing the underlying SQL data at all, and thus imposes zero load on your
DBMS.

ISYS formats each resultant row into a “document” containing field/value pairs. An example
document is shown below:

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 19 www.isys-search.com

EMPLOYEE_ID: 567
LNAME: SMITH
FNAME: JOHN
ADDRESS: 23 HICKS ST, SMITHVILLE
DOB: May-23-65
NOTES: John was interviewed by Dave Hicks from HR upon
commencement, and was found to have an excellent work
attitude. His hobbies included breeding of cats, dogs and

This is the default textual rendition of the SQL row. Each column from the table is considered a
paragraph for ISYS purposes, which allows the proximity search operators of ISYS to be used to
good advantage. Each paragraph begins with the column name, and then is followed by the data
for that column. ISYS does not actually convert the data or save it to disk in any way – this textual
rendition is only a view of the underlying SQL data being accessed directly.

Using the ISYS Rich SQL feature, you can arrange to format the document in any way you like.
Individual columns can be placed anywhere, font varied, graphics inserted, fields re-labeled,
selected fields bounded and wrapped. The mechanism for doing this is an HTML template, thus
the full richness of HTML is available to you in formatting the document.

The indexing and searchability of the row is always done according to the underlying document
image as exemplified above, not the presentation template. Hit highlighting is automatically
transferred from the simple textual rendition to the richly formatted form.

In some applications, you may not wish to use ISYS to browse documents at all – you may wish
to only use ISYS to return the primary keys of the found rows, and access the rows in your own
application. This is absolutely fine, but ISYS will still index a virtual textual view of the document
and search accordingly, so in order to have a good understanding of how the search functionality
works, it’s important to keep this model in mind.

SQL PRIMARY KEY FIELDS

It is a fundamental tenet of relational databases that every row must be uniquely identified by a
primary key, and this also applies to the table generated by the SELECT statement that defines
the SQL data ISYS is to index.

Part of your SQL configuration within ISYS involves nominating a primary key for ISYS to use. It
is this key which becomes adorned to the SELECT statement through a WHERE clause to
access specific rows at indexing and at browse times. For most straightforward single table
scenarios, this will simply be a matter of nominating the table’s primary key field. A little care is
required to make sure you nominate a field you know to be unique. For example, in the above
scenario EMPLOYEE_ID would be the unique identifier, not LNAME.

ISYS has no way of verifying that the field you nominate is a good choice. For example, if you
incorrectly specified LNAME everything would work fine until a non-unique last name was
encountered. Also, on small data volumes performance may well be acceptable, whereas on
larger data volumes performance would likely start to degrade.

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 20 www.isys-search.com

In the case of a SELECT which joins multiple tables together, you need to be especially aware
because a key which is unique for a single table, after a one-to-many join, is no longer unique.
This is not a situation brought about by ISYS – it’s simply how relational databases work. In these
cases, you would need to specify a compound key which is usually the primary key from the first
table, and a supplemental key from the second table. If the join is a one-to-one, then the original
single key will be sufficient. Non-unique primary keys are diagnosed at the end of the indexing
run as critical errors.

In general, the process is one of looking at your data schema, understanding the data
relationships, and specifying the correct key or combination of keys to ensure you have a suitable
unique identifier for the result of the SELECT. If in doubt, consult your DBA.

SQL EFFICIENCY

As described above, ISYS can fully resolve a query without involving the SQL DBMS in any way.
This means that absolutely no traffic is sent to the DBMS during query evaluation, which implies
that you can run your ISYS server on a different machine to spread load if you wish.

ISYS always fully executes the SELECT in order to enumerate the document name space at the
beginning of an UPDATE. It subsequently re-executes the SELECT with an additional WHERE
clause to access individual records for indexing or browsing purposes. It only does this when it
needs to access that particular record – never for searching purposes.

It is important that the primary key field(s) you specify are efficient in an SQL sense. In other
words, the SQL optimizer needs to be able to generate some efficient way of accessing individual
records, preferably via an SQL index. It is very important to note the difference between an ISYS
index, which is a word-oriented, full text index of the entire SQL record, versus an SQL index
which exists on a single field and has been created using an SQL “CREATE INDEX” command.
The SQL index allows the optimizer to efficiently access records via nominated primary and
secondary keys.

A classic symptom of an inappropriate primary key is that your indexing run starts proceeding at a
reasonable pace, but gets steadily slower as it progresses. For example, the first thousand rows
might be indexed in five seconds, but after a few hundred thousand rows it might be taking fifteen
seconds to index a thousand rows. Later it might grow to thirty seconds per thousand.

If you see a steady, arithmetic degradation in SQL indexing speed then it is almost certain there
is no efficient way to access individual records based on your key field expression. Review your
key field expression and your available SQL indexes. Consult your DBA. This situation is an SQL
issue, not an ISYS one.

SQL FIELD-LEVEL SEARCHING

It has been mentioned above that ISYS searching is fundamentally different to the conventional
SQL searching to which you may be accustomed. In particular, SQL is best at finding an exact
value in a nominated column – it can do other things, but those are not its strength. ISYS is best
at finding words or phrases in combinations anywhere in the whole SQL table. ISYS can also do
field-level searching for exact values, but typically if you want to perform that sort of searching all

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 21 www.isys-search.com

the time, although ISYS can do it, SQL can probably do it better. If you want to combine
approaches, then ISYS is the way to go.

Put another way, traditional SQL databases are very good at structured searching, and very poor
at unstructured searching. ISYS is best at unstructured searching but also performs well in
structured searching.

The way to perform an ISYS search for a given word across an entire SQL record is just to pose
the word as a query, for example:

 SMITH

Likewise, to perform a Boolean or more complex search across an entire record:

 SMITH AND HICKS

To search for a given term in a particular field, perform a labeled paragraph search:

 SMITH IN NOTES

Or you can get slightly more sophisticated:

 (HICKS IN NOTES) and (JOHN IN FNAME) and (AFTER 01-Jan-62 IN DOB)

Due to its polymorphic searching ability, ISYS is obliged to offer a surprising level of flexibility in
its fielded searching. A given field does not have to occur in the same place in each record, nor
does not even have to occur, or may occur more than once in a given record. For SQL data, a
certain amount of regularity can be assumed, but don’t forget that a single search may be
covering multiple disparate tables, as well as XML and ASCII file dumps, etc.

The first step for ISYS in doing a field-level search is to identify where the fields occur. This
process may actually be more resource consumptive than locating the target words themselves,
because there may be many more occurrences of the field label than the target word, and ISYS
performance is related to result size.

You can leverage your knowledge of your SQL data and the fact that each field occurs only once
in each record, and always at the same place (if indeed it does), to provide ISYS with the
information it needs to dramatically increase fielded search performance. The technique is simply
to address the search to a particular field ordinal (which is always at a fixed location), rather than
a field name which may occur anywhere. For example:

 FIELD 5 (HICKS)

Sharing your knowledge of the regular structure of your data with ISYS like this can result in a
performance boost which is breathtaking – several orders of magnitude. This is of particular use
for ISYS:sdk applications, or with ISYS:web or ISYS:web.asp, where the actual syntax behind a
fielded search can be hidden from the user.

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 22 www.isys-search.com

ISYS AND XML

ISYS can either process XML files as large, uninterpreted monolithic text files, or can process the
XML intelligently.

When processing XML files as XML, the paradigm is akin to that of SQL data sources – the XML
file is seen as a series of rows and columns, and each record within the XML file is indexed as a
separate ISYS “document”.

XML records are formatted into textual renditions, similar to SQL records. They can be viewed
directly, or via a template to add powerful formatting. The searchability factors are the same as
for SQL. Note, however, that ISYS’ ability to do field-level searching and be tolerant of fields that
occur more than once per record is particularly useful for XML.

ISYS accesses the records in the XML file directly, not via a DOM. This means that ISYS
provides blindingly fast access, even on extremely large XML files. In benchmarks against
competitors, ISYS has provided sub-second access to individual records in XML files so large
that attempts to access them via the standard DOM simply caused the machine to freeze for
several minutes and then reboot. ISYS provides unparalleled scalability for large XML files.

RELEVANCE RANKING

ISYS relevance ranking is based on a computed expression of the relevance of each document
compared to the other documents in the same result set. The calculation is based on hit
clustering, cluster proximity, document density, word weight and other factors.

The algorithm is fuzzy in nature, and automatically provides weighting, for example:
• Hits in the meta data are considered more relevant than hits elsewhere

• Hits near the top of a document are considered more relevant than hits near the end

• Notwithstanding the above, a large mass of hits near the end of a document will rank as
more relevant than a document with few hits near the top.

• Search terms that occur near each other are considered more relevant than, for example,
a ten page document with a hit on “Cat” on the first page, and a hit on “Dog” on the last.
This is because although a document may contain both terms, if they occur far apart,
they may not be related in a meaningful sense. If they occur near each other, it is more
likely that the subject matter connects them in some way.

• If all else is equal, a given quality of hits in small documents will rank better than in large
ones.

Relevance is a comparative measure amongst the documents in the same result set.

ISYS:WEB SERVER BANDWIDTH CONSIDERATIONS

There are two aspects when considering server bandwidth. The first is local network traffic to
indexes and documents, and has been adequately covered previously in this document. The
second is bandwidth out to the browser.

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 23 www.isys-search.com

In terms of browser bandwidth, the main thing to remember is that ISYS offers a range of options
that let you make an appropriate choice for your situation. ISYS:web provides three levels of
fidelity in rendering documents:

• Speed mode – a highly efficient text-only rendition

• Rich HTML – an on-the-fly conversion of the document to HTML, preserving graphics and
formatting

• Native application – the original document rendered via a browser plug-in or native
application

Of the three, Speed Mode is usually the best option. However, when dealing with particularly
large documents or in very high traffic situations, Outline Browse may also be used. Outline
Browse enables you, for documents larger than a certain size, to deliver only those portions of the
document which may be of interest. Further options let the user expand up and down around
rendered portions to see more text if desired.

Outline Browse provides superb bandwidth utilization, even on the largest documents, and even
on the slowest networks. Outline browse is a substantial scalability tool for dealing with oversized
documents in a practical way.

REAL-TIME INDEXING

ISYS has been used to good effect when real-time indexing is required. In one application using
the ISYS:sdk, ISYS was used to process a peak of seven news stories per second, and run 3000
custom queries against each one.

The key to using ISYS in a real-time scenario is gain leverage from the power of batching and the
beneficial effects of queuing theory. Attempting to deal with a flow of incoming documents in real-
time means you must always be able to cope with the peaks. This can prove to be a difficult
scaling problem, and should traffic exceed your expected peak momentarily, then traditionally you
must implement some form of queuing mechanism, and take advantage of an anticipated “quiet
time” in the near future to process through the backlog.

With ISYS, such complexities are not necessary. The best method is to record your real-time data
into a transaction file and have a separate process which takes the transaction file and applies it
to the ISYS index (by calling Process_Transactions). When the Process_Transactions call
completes, the process simply repeats the procedure. In times of little traffic, each transaction file
will contain only a single item of data. In busy periods, the transaction file may contain several
items of data. Remember the mindset for indexing scaling: “second and subsequent documents
can almost be thought of being processed for free”. This means that if the real-time traffic load
were such that the transaction file had grown to three entries while the last one was being
applied, then those three will be applied next time through in almost the same time it would have
taken to apply one.

This architecture creates a system that automatically optimally balances near real-time updates
versus throughput. The structure effectively automatically adjusts the granularity in a self-
balancing way, and is far simpler to implement than a system that tries to keep pace and then
queues.

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 24 www.isys-search.com

TAXONOMIES AND CATEGORIZATION

Broadly speaking, taxonomies can be of two types:
• Fully manual – humans create the structure of the taxonomy and also decide which

documents belong to which taxonomic category

• Fully automatic – software generates the structure and populates it.

Research has shown that the manual construction of a taxonomy quickly reaches a point of
diminishing return. Yet at the other extreme, we’ve all seen computer-generated categorizations
produce quite meaningless and bewildering categories.

ISYS takes a hybrid approach that optimizes the reward for effort equation. With ISYS, a human
generates the structure of the taxonomy, and the software populates the categories with
documents. Moreover, this populating takes place dynamically at execution-time, so new
information is automatically categorized upon arrival, with no manual intervention. The ISYS term
for this is a Concept Tree. ISYS:desktop, ISYS:web and ISYS:sdk all support Concept Trees, and
the trees are interchangeable between products.

The ISYS approach offers substantial benefits in scalability, because the manual portion (the
preparation of the structure) is of a relatively fixed size. In other words, once you prepare your
structure your work is largely done, even as your document volume doubles and redoubles. You
only need revisit your structure should the nature of the information take a substantial twist.
Further, because of its searching performance characteristics, ISYS can very efficiently slot
documents into the categories, even on very large data volumes.

DISTRIBUTED INDEX AND DATA SCENARIOS

Performance issues aside, there are other considerations that impact index and document
topology.

In a simple case of a single physical location and a reasonably fast LAN, documents and indexes
can be located without too much thought. However, where an organization has multiple offices
with slow data links, some design may be in order.

Consider a legal firm with offices in London, New York and Sydney. Each office has its own high
speed LAN, but is connected via a relatively slow VPN. The goal is to create a company-wide
brief bank.

There are three basic models for data and index distribution.

One approach is to store the text documents throughout the WAN. For example, documents
could simply be stored on the LAN upon which they are created. A comprehensive index of all the
documents would then be maintained on a single, arbitrary file server. Users at any office could
then search the index to find information residing on any server within the WAN, subject to LAN
security, of course. This approach works best if the documents can be stored on the LAN that is
most likely to retrieve them. Because the index is centrally located, it is easier to maintain and
manage. As discussed, the index is a relatively small file and imposes minimal WAN traffic when

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 25 www.isys-search.com

used for query purposes remotely. The documents, whether large or small, are located locally
and so in most cases there is minimal overhead required to retrieve them, assuming each office
tends to most frequently access its own information, and more rarely needs the other offices’
information for reference.

Using another approach, each LAN could have its own documents and indexes. Users on other
LANs could search the indexes of other selected sites. Although not attractive from an aesthetic
point of view, all local queries would be completely processed without any WAN traffic
whatsoever, and each office would be self-sufficient in the event of WAN outage.

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 26 www.isys-search.com

In a third scenario, a central document collection and index could be maintained on a single LAN.
Users at other sites could search the central database regardless of their physical location. This
is the neatest approach, but potentially the least effective, least convenient, and least fault
tolerant.

A combination of these approaches can also be implemented, for example the central index could
be periodically replicated locally. ISYS could then use the locally replicated index for searching
but the centrally maintained documents for browsing. This would have the advantage of minimal
network traffic and a high degree of fault tolerance. The WAN would only be utilized when people
needed to actually view documents domiciled in other locations.

If WAN reliability were very low (or perhaps even non-existent, for example with a very remote
workforce), and if uptime were paramount, then you may even choose to replicate both indexes
and documents across all locations. ISYS Search Software’s ISYS Replication and Distribution
Utility product can assist with replication issues, if this is a path you wish to take.

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 27 www.isys-search.com

Inevitably, the best approach will depend on your exact circumstances, and among the factors to
consider are:

• What proportion of a location’s document access will be of its own documents, versus
other locations’ documents ?

• How slow is your long haul network compared to local access?

• What is the likelihood of the long-haul connectivity failing?

• What are the ramifications when it does fail?

• How acceptable is it for remote documents to be slower to open than local documents?

Resource Consumption and Performance Characteristics of ISYS

© ISYS Search Software Inc 28 www.isys-search.com

OPPORTUNISTIC LOCKING

Opportunistic Locking is a feature of Microsoft Windows NT and 2000 which attempts to provide
enhanced disk performance at the expense of data integrity.

Opportunistic Locking is on by default, which means that data loss may occur.

Like many vendors, ISYS Search Software recommends that Opportunistic Locking should be
turned off if problems occur, particularly where large data volumes or intensive I/O loads are
involved. Microsoft Knowledge Base Article Q296264 describes how this can be done.

